Macros

10-12 COOL User’s Manual

Macros

IGNORE MACRO

Name:

Synopsis:

Example:

10.12 The IGNORE macro silences warnings from the compiler relating to unused
variables or function arguments. An application often has no control over the interface
to a function and does not require all of the arguments. In other situations, an object
might be created so that a friend function can access some private static data member.
Without this macro, warnings of the type “warning: variable <foo> declaredbut not
used” appear. The IGNORE macro suppresses these warning messages.

IGNORE — Silences compiler warnings from unused variables
IGNORE (name)

name The name of the argument/variable not used

The following example shows the main function of a program with its two standard
arguments. However, in this example, these arguments are unused. By using the
IGNORE macro, the warning error messages are never generated by the compiler.

main (int argc, char** argv) {
IGNORE (argc); // Don’t use argument
IGNORE (argv) ; // Don’t use argument

W =

COOL User’s Manual

10-11

Macros

Name:

Synopsis:

Example:

EXPAND_ARGS — Expand macro arguments before invocation
EXPAND_ARGS (name, REST: args)

name Name of the macro to be invoked

args Arguments to be expanded and then passed to the macro

The <stdarg.n> header file provides a set of preprocessor macros to allow the C++
compiler to accept a variable number of arguments in a function call. The syntax of one
of these macros is va_arg (argp, type), where type is the type of the arguments
expected. In the case of such things as COOL parameterized classes, however, a type
like Pair<Generic*, Symbol*> is not recognized as a valid type by va_arg because it
too is a macro that must be expanded first. The solution is to pass the name of the macro
and its arguments to the EXPAND_ARGS macro, as shown below in line 2, which
results in the fype argument being expanded before being passed on, instead of the
standard call as in line 1.

1 va_arg (argp, type)
2 EXPAND_ARGS (va_arg, argp, type)

INITIALIZE

Name:

Synopsis:

Example:

10.11 The INITTIALIZE macro guarantees to execute a body of code before the main
program is called. This is often necessary in an application when a table or state infor-
mation needs to be initialized before constructors can be called. INITIALIZE works by
creating a static function containing the body of code to be executed. It initializes a
global static variable, For_Initialization_only, with a pointer to this function.
For_Initialization_Only iS a class whose constructor executes the function. The
C++ language guarantees to execute the constructors for all global and static class in-
stances before the main program is run. However, there is no mechanism by which the
user can control the ordering of global static constructors themselves.

INITIALIZE — A MACRO whose body is executed once
INITIALIZE (name) { body }

name Name of the initialization sequence

body Statements substituted when the macro is expanded

In the following example, a global instance of a hash table is created on line 1 where
both the key and the value are character strings. Lines 2 through 6 contain the
INITIALIZE macro invocation to initialize this hash table by invoking the put
member function of the Hash_Table class.

Hash_Table<char*, char*> capitals_g;
INITIALIZE (capitals_g) {
capitals_g.put (“Texas”, “Austin”);
capitals_g.put (“Arkansas”, “Little Rock”);
capitals_g.put (“Michigan”, “Lansing”) ;

(@)W, IS NROS I S N

10-10

COOL User’s Manual

Macros

ONCE_ONLY

Name:

Synopsis:

Example:

10.9 The ONCE_ONLY macro allows an application to control the expansion or in-
sertion of a section of code or function. ONCE_ONLY creates a symbol in a package
whose value is the file name where the symbol was first encountered. If the current
value of the symbol is the same as the current file (available from the standard
preprocessor symbol __r1LE__), the code is expanded and compiled. If not, nothing
happens. ONCE_ONLY uses symbol and package objects and is more completely dis-
cussed in Section 11, Symbols and Packages.

ONCE_ONLY — A macro whose body is expanded only once
ONCE_ONLY (name) {body}

name Symbolic name given to this operation

body Statements substituted when the macro is expanded

The C++ parameterized type macros generate two sets of code: a declaration that must
always be included and implemented code that only needs to be compiled once. This is
particularly important when the definition of the parameterized type is in a header file.
By using the ONCE_ONLY macro, all macros and expansion of code are controlled
and located in a single header file. The code implementing the parameterized type is
expanded by the first application source file that included the header file.

The DECLARE macro used to declare a specific type of parameterized class only de-
clares the class type and inline member functions. This could be changed to also imple-
ment the member functions by invoking the IMPLEMENT macro, if this is only done
once during compilation. The macro auro_pecrare declared below would implement
the member functions one time only.

MACRO AUTO_DECLARE (name, REST: parms) {
DECLARE name<parms>;
ONCE_ONLY (Implement_##name<parms>) {
IMPLEMENT name<parms>;
}

(@) WV, IS NROS I S N

}

Line 1 declares the macro auro_pecrare with two arguments. The first argument speci-
fies the parameterized class name and the second specifies any necessary arguments,
including the type. Line 2 declares the parameterized class of the specified type. Lines
3-5 utilize ONCE_ONLY to implement the parameterized class if it has never been
implemented before. This mechanism is not the default mechanism used in COOL be-
cause it prevents the fracturing of the source code template to reduce program size. This
feature is available with CCC and is discussed in section 5, Parameterized Types.

EXPAND_ARGS

10.10 The EXPAND_ARGS macro is useful when one or more of the arguments to
some MACRO are themselves macros that must be expanded first. This feature is also
available via the expanding option in the MACRO syntax discussed earlier. The major
difference between the two is that EXPAND_ARGS allows this function to be added to
existing macros that may not have this already in place.

COOL User’s Manual

10-9

Macros

KEYARGS

Name:

Synopsis:

Example:

10.8 The KEYARGS macro implements a keyword argument feature for standard
C++ functions similar to the KEY: modifier available with MACRO which supports
optional keyword arguments.

KEYARGS — Provides keyword arguments for C++ functions
KEYARGS type name (arglist)

type Function return type
name Name of the function
arglist A C++ function argument list that supports keyword arguments:

[KEY:] identifier [= default] [, arglist]
All ensuing arguments are taken to be keyword arguments that allow
the user to specify a particular value. Default values are supported by
an equal sign and value, and can be applied to both regular and key-
word arguments.

This example defines the function set that returns a Boolean value. The first argument
(size) is a required positional argument, while the second and third (10w and high) are
optional keyword arguments. A skeleton implementation of this function is shown in
lines 1 through 3 below:

1 KEYARGS Boolean set (int size, KEY: int low=0, int high=100) {

2

3 }

Lines 4 through 6 show a call to set with a value of 512 for the first argument and a

value 1024 for the key argument high. The value of the keyword argument 1ow will
default to value 0. Lines 7 through 9 show the results of this macro expansion:

4 if (set (512, high=1024) == TRUE) {
5

6 }

7 if (set (512, 0, 1024) == TRUE) {

8

9 }

10-8

COOL User’s Manual

Macros

A specific example for the Vector<Type> class is shown below. Lines 1 and 2 show the
macro call and lines 3 through 8 show the resulting macro expansion:

1 Vector<int> vl;

2 LOOP (int, e, vl) { cout <<e<<", ”;}
3 { int e;

4 for (vli.reset(); vli.next ();) {

5 e=vl.value();

6 cout << e<<"”, ";

7 }

8 }

This example contains an instance of vector<int> called v1. The Loop macro iterates
through the vector and assigns each element to a temporary variable e. This is then used
in the expanded body argument. The net result is to print all elements in the vector sepa-
rated by commas.

ISSAME

Name:

Synopsis:

Example:

10.7 The ISSAME macro is used in the preprocessor to compare two strings to see if
they are the same. This macro is intended to be used in a similar manner as the
preprocessor #if directive, which allows a symbol to be compared to some integer value.
If the character strings are the same, ISSAME returns one; otherwise, it returns zero.

ISSAME — Compares two character strings at compile time
ISSAME (argl, arg2)

argl The first character string

arg?2 The second character string

This macro is used in the COOL Hash_Table<7'1,72> class to select the hash function
based on the key type. If the hash table is parameterized such that the key type is char*,
a specific hashing function suited for character strings is implemented as the default
hashing scheme. If not, an alternate hashing function is used. In the example below, line
1 compares the key type to several string type names. If a match is indicated, the
statements at line 2 will be used. If no match is indicated, the statements at line 4 will be

1 #i1f ISSAME (T1l, char*, String, Gen_String)
2

3 #else

4

5 #endif

COOL User’s Manual

10-7

Macros

Example 3:

The macro build_table is defined on lines 1 through 3 and takes two arguments: a
name to associate with the table and a REST: argument called rest that refers to all
remaining arguments. A char* variable called name is defined on line 2 and contains an
embedded call to a second macro with the rest argument mentioned above. Note also
that the embedded call is within the initialization braces of the character string variable
and is followed by a NULL symbol.

The second macro defined in lines 4 through 9 loops through the rest argument values
and recursively calls itself. Line 4 contains the prototype with two arguments. The first
argument first is stripped from the incoming argument list and the remaining count
arguments are left alone in the rest argument. Line 5 uses the ANSI # character on an
argument to double quote the value. Then, a conditional clause tests count to see if there
are remaining arguments and, if so, recursively calls the macro. When there are no more
arguments, the build_table macro regains control and appends the NULL and closing
brace to the result of the second macro.

A sample use of this macro is shown below to illustrate the construction of aNULL-ter-
minated table containing character strings. Line 1 shows the macro call and line 2 shows
the resulting macro expansion:

1 build_table (table, 1,2,3,4,5,6,7);
2 char* table[] = {”1", “2"’ \\3/![wgr, wgm, “6", w77 NULL};

As a final example, here is a macro that uses the BODY: modifier. It takes advantage of
the current position feature found in the COOL container classes to implement a general
purpose LOOP macro similar to that found in Common Lisp. Since all COOL container
classes implement the current position iterator capability, this macro will work equally
well with List, Vector, Set, and so on:

MACRO LOOP (type, variable, container, BODY: body) {
{ type variable;
for (container.reset (); container.next ();) {
variable = container.value () ;
body

OO\ AW

}

Line 1 contains the prototype of the macro roop that takes four arguments: a container
class element type; a variable name (of the type) to be declared; the name of a container
class instance; and a BODY: argument of code to be applied to each element. Line 2
declares an instance of the element type in the specified container class. Lines 3 through
6 implement a loop that iterates through the elements of the container. Line 4 assigns the
value of the element at the current position to the local variable declared on line 2. Line
5 expands the body argument specified.

10-6

COOL User’s Manual

Macros

MACRO Examples

Example 1:

Example 2:

10.6 Following are three examples of MACRO, each using various features and con-
cepts to highlight some of the COOL macro capabilities. More detailed and complex
examples follow in subsequent sections. It cannot be emphasized enough how impor-
tant the macro facility is to the implementation of COOL. Without it, many features and
functions would not be possible or would be more cumbersome and difficult to use. As
an example of this type of use, the aggressive reader is referred to the end of Section 11,
Symbols and Packages, for a detailed examination of the symbol_package macro.

This is a simple use of MACRO to implement a wrapper to an initialization routine that
provides greater flexibility in passing arguments than is possible with straight C++ 2.0
syntax.

1 MACRO set_val (size, value=0, KEY: low =0, high) {
2 init (size, value, low, high-low)}

Line 1 contains the function prototype for the macro set_val defined between the fol-
lowing braces. This macro takes four arguments:

* size is arequired positional argument;

* valueis an optional positional argument that if not specified in a particular call has
a default value of o;

* low is an optional keyword argument with a default value of zero;
* high is a required keyword argument.
Line 2 contains the body of the macro which in this case involves a call to the init ()

function. The following shows several legal invocations of the macro, along with the
resulting macro expansions:

set_val (0, high=20) —> init (0, 0, 0, 20-0);
set_val (0, low=5, high=15) —> init (0, 0, 5, 15-5);
set_val (1, 2, high=25) —> init (1, 2, 0, 25-0);

The next example makes use of the REST: argument list modifier and recursive calls of
the macro defined. Note that there are two macros, the first calls the second to do most
of the work. The results of both are combined and placed on the standard output of the
preprocessor:

1 MACRO build_table (name, REST: rest) {

2 char* name[] = { build_table_internal (rest) NULL}

3 }

4 MACRO build_table_internal (first, REST: rest=count) {
5 #first,

6 #if count

7 build_table_internal (rest)

8 #endif

9 }

COOL User’s Manual

10-5

Macros

MACRO

Name:

Synopsis:

10.5 MACRO provides a powerful and flexible macro language used to simplify
many of the features and functions contained in the library. The defmacro feature pre-
viously discussed is used to declare the MACRO keyword whose implementation is a
preprocessor-internal routine named macro. The terminating delimiter for a MACRO
is the closing brace character. MACRO implements an enhanced #define syntax that
supports multiple line, arbitrary length, nested macros, and preprocessor directives with
positional, optional, optional keyword, required keyword, rest, and body arguments.

MACRO — Enhanced COOL macro language
MACRO name [expanding] (arglist) { body }

name

expanding

arglist

body

The name of the macro

Optional argument that, when present, indicates that argument names
themselves should be macro-expanded before passing onto and invoking
the name macro.

A list of comma separated arguments

KEY: identifier [= value]

All ensuing arguments are taken to be keyword arguments that allow
the user to specify a particular value. Default values are supported by
an equal sign and value, and can be applied to both regular and key-
word arguments.

REST: name [= count]

Indicates that there are some number of arguments, all of which are
referenced by the one named identifier. An optional equal sign and
identifier contains the number of arguments remaining. This is typi-
cally used when an outer level macro must pass some number of argu-
ments to an inner level macro.

BODY: body

Indicates that body is to be expanded to include all text within the
braces after the macro call. This is useful for identifying a section of
code that implements some part of the macro or should be passed to
other nested macros.

Statements substituted when the macro is expanded. These statements can
be any valid C++ statements terminated with a semicolon and surrounded
by curly-braces.

10-4

COOL User’s Manual

Macros

defmacro

Name:

Synopsis:

10.4 The #pragma defmacro statement is implemented in the COOL preprocessor
and is the single hook through which features such as the class macro, parameterized
templates, and polymorphic enhancements have been implemented. The defmacro fa-
cility provides a way to execute arbitrary-filter programs on C++ code fragments pass-
ing through the preprocessor. When a defmacro style macro name is found, the name
and everything until the delimiter (including all matching { } [] () <>‘’ * and comments
found along the way) is piped onto the standard input stream of the indicated program or
filter procedure. The procedure’s standard output is scanned by the preprocessor for
further processing. The expansion replaces the macro call and is passed onto the com-
piler for parsing.

The implementation of a defmacro can be either external to the preprocessor (as in the
case of files and programs) or internal to the preprocessor. For example, the template,
declare, and implement macros that implement parameterized types is internal to the
preprocessor to provide a more efficient implementation. The defmacro facility first
searches for a file or program in the same search path as that used for include files. If a
match is not found, an internal preprocessor table is searched. If a match is still not
found, the error message “Error: Cannot openmacro file [XXxx]” is sent to the standard
error stream where xxx is the name as it appears in the source code. The fundamental
COOL macros are defined with defmacro in the header file <COOL/misc.h>, which is
included by all COOL C++ source files.

defmacro — The COOL C/C++ preprocessor extension mechanism

#pragma defmacro name <file> options
#pragma defmacro name “file” options
#pragma defmacro name program options

name A character string identifying the macro

file The name of a file implementing the macro

program The name of a filter program implementing the macro

options One or more of the following space-separate parameters:
recursive

When present, the macro may be recursively expanded.

expanding
When present, input to the macro is macro-expanded.

delimiter=c
The default delimiter ‘;’ is replaced with c.

condition=c
When present, the macro will not be invoked unless followed by c.

REST: args
Other arguments are passed to the macro expander.

COOL User’s Manual

10-3

Macros

Name:
Synopsis:
Options:

The COOL preprocessor is derived from and based upon the DECUS ANSI C
preprocessor made available by the DEC User’s group in the public domain and sup-
plied on the X11R3 source tape from MIT. It complies with the draft ANSI C specifica-
tion with the exception that trigraph sequences are not implemented. In addition to
support for COOL macro processing discussed above, the preprocessor has several new
command line options to support C++ comments. These command line options also
have include-file debugging aids.

ccpp — The COOL C/C++ preprocessor
ccpp [—options] [infile [outfile]]

-B
Recognizes the C++ double slash (/) comment character and treats all characters
following up to the next newline character as commentary text.

-C
If set, source-file comments are written to the output file. This allows ccpp output
to be used as input to a program such as lint(1) that expects comments to be spe-
cially formatted.

—Dname[=value]
Defines name as if the programmer had defined it in the program. If no value is
provided, a default value of 1 is used.

-E
Always returns a successful status completion code to the operating system, even if
errors were detected.

—Idirectory
Adds the specified directory to the list of directories searched when looking for an
include file. Note that there is no space between the option letter and the directory
name.

—Uname
Undefines name as if the programmer had undefined it in the program.

—X[number]

Enables debugging output from the preprocessor. A value of 1 for number will
cause the pathname of each included file to be sent to the standard error stream. A
value of 2 for number will cause #control statements to be inserted as comments in
the output. A value of 3 for number will enable both debugging modes. If no value
for number is provided, a default value of 1 is used. Note that this option is designed
to be a debugging aid for use when the preprocessor is run as stand alone and not
when invoked by the control program. Other values for number are ignored.

10-2

COOL User’s Manual

MACROS

Introduction

10.1 The COOL macro facility is an extension to the standard ANSI C macro
preprocessing functions available with the #define statement. The COOL preprocessor
is a modified ANSI C preprocessor that allows a programmer to define powerful exten-
sions to the C++ language in an unobtrusive manner. This enhanced preprocessor is
portable and compiler-independent, and can execute arbitrary-filter programs or macro
expanders on C++ code fragments. It is important to note, however, that once a macro is
expanded, the resulting code is conventional C++ 2.0 syntax acceptable to any conform-
ing C++ translator or compiler.

The COOL macro facilities have many components. Macros such as those that support
parameterized templates are implementations of theoretical design papers published by
Bjarne Stroustrup. Others provide significant language features and enhanced power
for the programmer heretofore unavailable with conventional C++ implementations.
This section provides information on the COOL macro facility that forms the basis for
many of the advanced features covered in later sections. The following topics are dis-
cussed in this section:

* COOL preprocessor

* defmacro

* MACRO

* Example COOL macros

Requirements

10.2 This section discusses the macro facilities of COOL. It assumes that you have a
working knowledge of the C++ language and are familiar with the concept of macros
and macro expansion as found in the standard C preprocessor.

COOL
Preprocessor

10.3 The COOL preprocessor is supplied as part of the library and is the
point at which all language and computing enhancements available in COOL are imple-
mented. The proposed draft ANSI C standard indicates that extensions and changes to
the language or features implemented in a preprocessor or compiler should be made by
using the #pragma statement. The COOL preprocessor follows this recommendation
and uses this to make all macro extensions. The #pragma defmacro statement is the
single hook through which features such as the class macro, parameterized templates,
and polymorphic enhancements have been implemented.

Porting COOL to a new platform or operating system starts with the preprocessor. The
preprocessor contains support for the defmacro statement and also implements several
important macros internally for efficiency and performance considerations. These in-
clude template, class, DEFPACKAGE, and DEFPACKAGE_SYMBOL.

COOL User’s Manual

10-1

Printed on: Wed Apr 18 07:11:36 1990

Last saved on: Tue Apr 17 13:30:12 1990

Document: s10

For: skc

pl2ps 3.2.1 Copyright 1987 Interleaf, Inc.

